

Applying of experiences from NATO SCI collaboration into the field of military professionals education

František Racek, Teodor Baláž , Jaroslav Krejčí University of Defence, 65 Kounicova, Brno, CR 662 10;

jaroslav.krejci@unob.cz; phone +420 973 443 216; fax +420 973 443 772; www.unob.cz

Department of Weapons and Ammunition

Presentation structure

- Introduction of Departments of Weapon and Ammunition
- The reflection of SCI collaboration in educational process
- Conclusion

fvt.unob.cz

Department of Weapons and Ammunition

- Education Activities
- Scientific and Expert Activities

Department of Weapons and Ammunition

OF2, Jaroslav KREJČÍ Senior assistant

University of Defence

Education – providing by DoWA

- long-cycle Master's study: full-time, 5 years, Czech study language, for military students,
- bachelor's study: full-time, 3 years, Czech and English study language, for civilian students,
- master's study: full- and part-time, 2 years, Czech study language, for military and civilian students,
- doctoral study: full- and part-time, 3 years, Czech and English study language, for military and civilian students,
- special courses for the military, police and civilian technical personnel.

Education content

- ballistics, explosives, initiators,
- design and usage of ammunition,
- design and usage small arms,
- design and usage of artillery weapons,
- design and usage of military optical devices and fire control systems,
- theory and practice of logistic support of the army with stress on the armament.

Scientific and Expert Activitiest

- the design and assessment of the small arms,
- the interior, exterior and terminal ballistics of small arms and artillery ammunition,
- the design and assessment of ammunition,
- the design and assessment of military electronic and optical devices,
- the usage, maintenance and diagnosis of the weapon systems.

fvt.unob.cz

Education, Scientific and Expert Activitiest

Ballistic laboratory

Optical laboratory

Department of Weapons and Ammunition

OF2, Jaroslav KREJČÍ Senior assistant

University of Defence

Ballistic laboratory - purpose

- fundamental ballistic measurements on ballistic systems up to calibre 12.7 mm,
- special ballistic measurements,
- measurement of selected parameters of weapons.

Department of Weapons and Ammunition

OF2, Jaroslav KREJČÍ Senior assistant

University of Defence

Ballistic laboratory - equipment

- ballistic analyser Kistler 2519A,
- piezoelectric pressure transducers Kistler 6215,
- optical gates for measurement of projectile velocity Kistler 2521A,
- optical target system Kistler 2523A,
- ballistic Doppler radar Prototypa DRS-1,
- generator of quasi-static calibration pressure Kistler 6906,
- generator of dynamic verification pressure Kistler 6909,
- firing stand Prototypa STZA-12,
- universal breech Prototypa UZ-2002,
- high-speed camera IDT NX4,
- ballistic barrels,

Optical laboratory - purpose

- measurements of fundamental parameters of optical devices, both day-light and night vision systems,
- testing and assessment of laser devices.

Department of Weapons and Ammunition

Optical laboratory - equipment

- system for measurement of optical transfer function Meopta,
- optical bench,
- holographic table,
- versatile collimator UKNP,
- system for check-up of night-vision devices NVG,
- spectrometers and spectrographs,
- models of absolutely dark bodies,
- thermo-camera FLIR,
- Hyperspectral camera Specim QE10V,
- high-speed camera Redlake HG100K,

...

Faculty of Military Technology

fvt.unob.cz

Department of Weapons and Ammunition

Mutual relationship between surveillance and camouflage defines significant requirements for:

- design of optical devices,
- design of methods of optical signal processing,
- design of camouflage means.

Fulfillment conditions

- to know the properties and characteristics of natural background,
- to be able to verify the physical properties of camouflage means,
- to verify the effectivity of camouflage means.

Most significant of SCI collaboration results

- Using of hyperspectral imaging for determination of properties and characteristics of natural background,
- Using of hyperspectral imaging for measurement of physical properties of camouflage surfaces,
- Camouflage effectivity testing.

Examples of publications

- Spectral Characterization of Natural Background in Virtue of Reconnaissance Possibilities,
- The possibilities of hyperspectral imaging for improving of validation of superficial quality of spectral features of camouflages surfaces.

Faculty of Military Technology

fvt.unob.cz

RACEK, František; BALÁŽ, Teodor. Spectral Characterization of Natural Background in Virtue of Reconnaissance Possibilities. In: International Conference on Military Technologies 2019 (ICMT'19). Brno: University of Defence, Brno, 2019.

Faculty of Military Technology

RACEK, František; BALÁŽ, Teodor; KREJČÍ Jaroslav. The possibilities of hyperspectral imaging for improving of validation of superficial quality of spectral features of camouflages surfaces. FSS Conference, Prague, 2017.

CAMOUFLAGE SURFACE – quality validation

- measurement of spectral qualities of camouflage surfaces
- Czech Defence Standard:
 - lab. measurement
 - spot measurement

University

of Defence

CAMOUFLAGE SURFACE – hyperspectral quality validation

	Spot A	Spot B	Spot C	Spot D	sum	mean
PFC2	0.306	0.1364	0.8305	1.496	2.7689	0.6922
PFC4	0.01817	0.01629	0.01354	0.005643	0.05364	0.01341
PFC6	0.02562	0.2641	0.1733	0.491	0.9540	0.2385
EFC	0.01834	0.2606	0.3128	0.6906	1.2823	0.3206

Other examples of publications

Using of hyperspectral imaging for determination of properties and characteristics of natural background

- BÁRTA, Vojtěch; RACEK, František; KREJČÍ, Jaroslav. NATO hyperspectral measurement of natural background. In: TARGET AND BACKGROUND SIGNATURES IV. Bellingham, Washington USA: Society of Photo-Optical Instrumentation Engineers (SPIE), 2018, p. nestránkováno. ISSN 0277-786X. ISBN 978-1-5106-2172-5.
- BÁRTA, Vojtěch; RACEK, František. Hyperspectral discrimination of camouflaged target. In: Target and Background Signatures III. BELLINGHAM, WA 98227-0010 USA: SPIE-INT SOC OPTICAL ENGINEERING, 2017, p. "1043207-1"-"1043207-9". ISSN 0277-786X. ISBN 978-1-5106-1328-7.
- BÁRTA, Vojtěch; HANUŠ, Jan. Collecting information for spectral boundaries determination. In: Target and Background Signatures IV. Bellingham, Washington USA: SPIE-INT SOC OPTICAL ENGINEERING, 2018, p. nestránkováno. ISSN 0277-786X. ISBN 978-1-5106-2172-5.
- RACEK, František; BALÁŽ, Teodor; MELŠA, Pavel. Ability of Utilization of PCA in Hyperspectral Anomaly Detection. In: International Conference on Military Technologies 2015 (ICMT'15). Brno: University of Defence, Brno, 2015, p. 19-22. ISBN 978-80-7231-976-3.
- RACEK, František; BÁRTA, Vojtěch. Spectrally Based Method of Target Detection in Acquisition System of General Fire Control System. In: Conference Proceedings of ICMT'17. Piscataway, NJ 08854-4141 USA: Institute of Electrical and Electronics Engineers Inc., 2017, p. 22-26. ISBN 978-1-5386-1988-9.
- RACEK, František; BALÁŽ, Teodor; MELŠA, Pavel. Hyperspectral Data Conversion in the Case of Military Surveillance. Advances in Military Technology, 2015, vol. 10, no. 1, p. 5-13. ISSN 1802-2308.
- RACEK, František; BALÁŽ, Teodor. Spectral Angle Mapper as a Tool for Matching the Spectra in Hyperspectral Processing. Advances in Military Technology, 2012, vol. 7, no. 2/2012, p. 65-76. ISSN 1802-2308.

Department of Weapons and Ammunition

Other examples of publications

Using of hyperspectral imaging for measurement of physical properties of camouflage surfaces

- RACEK, František; BALÁŽ, Teodor; JOBÁNEK, Adam. Utilization of hyperspectral camera for determination of camouflage surfaces spectral characteristics homogeneity. In: SPIE Security + Defence. Toulouse, France: SPIE Press, 2015, p. "96530K-1"-"96530K-13". ISSN 0277-786X. ISBN 9781628418637.
- RACEK, František; BALÁŽ, Teodor; KREJČÍ, Jaroslav; JOBÁNEK, Adam. Selected issues connected with determination of requirements of spectral properties of camouflage patterns. In: Target and Background Signatures III. BELLINGHAM, WA 98227-0010 USA: SPIE-INT SOC OPTICAL ENGINEERING, 2017, p. "1043205-1"-"1043205-12". ISSN 0277-786X. ISBN 978-1-5106-1328-7.
- RACEK, František; JOBÁNEK, Adam; BALÁŽ, Teodor; KREJČÍ, Jaroslav. Pixelated Camouflage Patterns from the Perspective of Hyperspectral Imaging. In: *Target and Background Signatures II*. Edinburgh: SPIE, 2016, p. nestránkováno. ISSN 0277-786X. ISBN 978-151060398-1.

Other examples of publications

Camouflage effectivity testing

- RACEK, František; BALÁŽ, Teodor; KREJČÍ, Jaroslav; JOBÁNEK, Adam. Evaluation of validity of observer test for testing of camouflage patterns. In: Target and Background Signatures IV. Bellingham, Washington, USA: Society of Photo-Optical Instrumentation Engineers (SPIE), 2018, p. nestránkováno. ISSN 0277-786X. ISBN 978-1-5106-2172-5.
- RACEK, František; KREJČÍ, Jaroslav. Target Acquisition Performance as a Criterion of Camouflage Pattern Effectiveness. In: Conference Proceedings of ICMT'19. Piscataway, NJ 08854-4141 USA: Institute of Electrical and Electronics Engineers Inc., 2019.

Result

- The experience and knowledge gained in collaboration with SCI are reflected in the preparation of students,
- The primary impact is on the teaching in subjects of Optical Devices of Weapons and Fire Control Systems,
- Most significantly, the SCI collaboration is reflected in independent scientific and creative work of DoWA and thus in the topics of students' final theses,
- The assumption of using knowledge in acquisition processes AČR.

